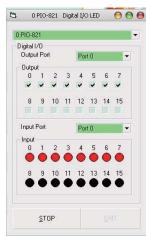
AGS-TECH Inc Phone: +1-505-550-6501 and +1-505-565-5102 Fax: +1-505-814-5778 Email: sales@agstech.net Web: http://www.agstech.net

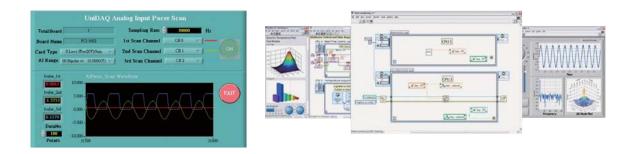
New Members in I/O Cards 2011 Product Catalog Vol.IOC 1.1.00 (2011.July.15)



Software

ICP DAS provides SDK and drivers for I/O cards to support various OS such as Linux, DOS, Windows 98/NT4/2000, and 32-/64-bit Windows XP/2003/2008/Vista/7. The Windows SDK for I/O cards contain DLL (Dynamic Link Library) file, ActiveX (OCX) control components and several sample programs with source code written in Microsoft Visual C++, Visual Basic, Borland C++ Builder, Delphi, VB.NET and C#.NET. By using the SDK and sample programs, no more complex hardware-register-based operations are required at all, and users can develop their application programs easily and quickly.

The UniDAQ is the new generation of Windows SDK that supports most I/O cards of ICP DAS, and users can then use the universal software interface to access these cards. The UniDAQ SDK supports 32-bit and 64-bit Windows, and also provides sample programs with source code for several programming languages.


		0 PSD-021 Analog Signut Pacar Denio	0
Configur Board	0 PIO-821	Channel Channell & Sampling Rate 10000 Hz	ACTIVE
Range	01 Bipolar +/- 5	Card Type O Low APx=	1001
		Card Type O Low(/JPsz :	(par
Analog t	o Digital Display		
-	ΛΛ	$\land \land \land \land \land \land$	Λ /
	$(\land) \land$		$ \rangle $
	$1 \times 1 \times 1$	$I \setminus J \setminus J \setminus J \setminus J \setminus J \setminus J \setminus J$	$I \setminus I$
			1 \ 1
	VVV		$/ \lambda$

a	webs.	
In 24 per line ar per per per promi per		
Decoderation a water	a	
The second secon		
Secondariante a seconda a second alles a second		A A Constitute A B
Lines V. Conness		
And the state of the Real Process		2 added to be
All Address of the Ad		
BA DOLLAR		
And in the lot of the second s		
Internation in Party		and a second
the stand in Kind has been		
Note is spice the original the function with them.		Territor a
And and a king the second plant and a second		
And discuss a field through		
bei staat i bit tat i tatetti		and the second s
Mirata and Miratan		CONTRACT OF
BUREAVE, BUILDEL		Same .
and the second s		
 Charlos C. Marcelli, S. Soll. Same. M. Strangelli, M. Marcelli, S. Soll. Same. M. M. Marcelli, M. Marcelli, S. Soll. 		0m.1
he franke		2, 20, 11
Balance Internation		
AND THE PROPERTY.		
The last life		
Canadiana and a gran and a constrained and a con		
Green grown to reason		
A Design of the second s		PLAT
a 1 man out of a 1 and bland in the same in the 11d man to and a d a class		and the second se
a to teacher was been and		ata da
A Transferrer water and an and a second second		
and the second se		
and .		

The NI LabVIEW is a graphical programming environment used to develop sophisticated measurement, test, and control systems using intuitive graphical icons and wires that resemble a flowchart. It is scalable across multiple operating systems and offers hundreds of builtin libraries. The ICP DAS UniDAQ SDK also supports a toolkit for LabVIEW platform. Users can develop their I/O card applications quickly and easily in LabVIEW with the UniDAQ LabVIEW toolkit and sample programs. The advantage of supporting most of the ICP DAS PCI I/O cards comes from the UniDAQ SDK also can help users to transfer their applications to different PCI I/O cards smoothly and quickly.

I/O Cards

PEX-D24/PEX-D56

PCI Express, 24/56-ch OPTO-22 Compatible DIO Board

Features **>>>**

- PCI Express x1, Plug & Play
- DIO response time is about 2 us (500 kHz max.)
- Emulate two industrial-standard 8255 PPI ports (mode 0)
- D/O with higher driving capability
- Double side SMD, short card

The PEX-D24/D56 is the new generation product that ICP DAS provides to meet RoHS compliance requirement, and is designed as easy replacement for the PIO-D24/PIO-D24U/PIO-D56/PIO-D56U. Users can replace the PIO-D24/PIO-D24U/PIO-D56/PIO-D56U by the PEX-D24/D56 directly without any software/driver modification.

The PEX-D24/D56 supports PCI Express bus and provides 24/56 TTL digital I/O lines. These lines are grouped into three 8-bit bi-direction ports that are named as port A (PA), port B (PB) and port C (PC). All ports are configured as inputs upon power-up or reset. The PEX-D24/D56 adds a Card ID switch for users to recognize the board by the ID via software when using two or more PEX-D24/D56 cards in one computer.

Software

- DOS Lib and TC/BC/MSC sample program (with source codes)
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with
 source codes
- source codes

Hardware Specifications _____

Models	PEX-D24	PEX-D56			
Digital I/O		•			
I/O Channels	24-ch, 5 V TTL	56-ch, 5 V TTL			
Input Logic Low	0.8 V max.				
Input Logic High	2.4 V min.				
Output Source Current	32 mA max.				
Output Sink Current	64 mA max.				
Programmable Interrupts 4					
General					
Bus Type	PCI Express x1				
Connectors	Female DB-37 x 1	Female DB-37 x 1, 20-pin Male box header x 2			
Power Consumption	420 mA @ +5 V 580 mA @ +5 V				
Operating Temperature	0 °C ~ +60 °C				
Storage Temperature	-20 °C ~ +70 °C				
Humidity	5 ~ 85% RH, non-condensing				

Ordering Information _____

PEX-D24 CR	PCI Express, 24-ch TTL DIO Board (RoHS)
PEX-D56 CR	PCI Express, 56-ch TTL DIO Board (RoHS)

- DLL and OCX SDK for 32-bit and 64-bit Windows XP/2003/ Vista/2008/7
- Supports LabVIEW and Linux

24/56 buffered TTL digital I/O lines

Three 8-bit bi-direction I/O ports

Supports Card ID (SMD Switch)

4 Interrupt sources

Pin Assignments

Pin Assign- ment	Те		Pin Assign- ment				
N.C	01		20	+5V			
N.C.	02	•	21	GND			
PB_7	03	•	22	PC_7			
PB_6	04		23	PC 6			
PB_5	05	•	24	PC 5			
PB_4	06		25	PC 4			
PB_3	07	•	26	PC 3			
PB_2	08		27	PC 2			
PB_1	09	•	28	PC 1			
PB_0	10	•	29	PC_0			
GND	11	•	30	PA 7			
N.C.	12	•	31	PA_6			
GND	13		32	PA 5			
N.C.	14	• •	33	PA 4			
GND	15		34	PA 3			
N.C.	16		35	PA 2			
GND	17		36	PA 1			
+5V	18		37	PA 0			
GND	19	0	57	170			
CON1							

Pin Assign- ment	Te	ermir	Pin Assign- ment				
DI 0	01	0	0	02	DI 1		
DI 2	03	0	0	04	DI 3		
DI 4	05	0	0	06	DI 5		
DI 6	07	LΟ	08	DI 7			
DI 8	09	0	0	10	DI 9		
DI 10	11	0	0	12	DI 11		
DI 12	13	Го	0	14	DI 13		
DI 14	15	0	0	16	DI 15		
GND	17	0	0	18	GND		
+5V	19	0	+12V				
CON2 (PEX-D56 only)							

Pin Assign- ment	Te	ermir	Pin Assign- ment						
DO 0	01	0	0	02	DO 1				
DO 2	03	0	0	04	DO 3				
DO 4	05	0	0	06	DO 5				
DO 6	07	Lo	0	08	DO 7				
DO 8	09	0	0	10	DO 9				
DO 10	10	0	0	12	DO 11				
DO 12	12	Γo	0	14	DO 13				
DO 14	14	0	0	16	DO 15				
GND	16	0	18	GND					
+5V	18	0	+12V						
	CON3 (PEX-D56 only)								

PEX-D48

PCI Express, 48-ch OPTO-22 Compatible DIO Board

Features **>>>**

- PCI Express x1, Plug & Play
- DIO response time is about 2 us (500 kHz max.)
- Emulate two industrial-standard 8255 PPI ports (mode 0)
- D/O with higher driving capability
- One 16-bit event counter
- Card ID function

- 48 buffered TTL digital I/O lines
- Six 8-bit bi-direction I/O ports
- D/I with pull-high and pull-low jumpers
- One 32-bit programmable internal timer
- 4 Interrupt sources

Introduction

The PEX-D48 is the new generation product that ICP DAS provides to meet RoHS compliance requirement, and is designed as easy replacement for the PIO-D48/PIO-D48U. Users can replace the PIO-D48/PIO-D48U by the PEX-D48 directly without any software/driver modification.

The PEX-D48 supports PCI Express bus and provides 48 TTL digital I/O lines. These lines are grouped into six 8-bit bi-direction ports. Every three 8-bit ports are named as port A (PA), port B (PB) and port C (PC) in a connector, and the port C can be split into 2 nibble-wide (4-bit) parts. All ports are configured as inputs upon power-up or reset.

The PEX-D48 adds a Card ID switch for users to recognize the board by the ID via software when using two or more PEX-D48 cards in one computer. The pull-high/low jumpers allow user to predefine the DI status instead of floating when the DI channels are unconnected or broken.

Software

- DOS Lib and TC/BC/MSC sample program (with source codes)
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
- Supports LabVIEW and Linux

Pin Assignments

PB 0

GND

NC

GND 13

N.C.

GND

N.C.

GND 17

+5V

GND

10

11

12

14

15

16

18

19

•

.

•

•

.

Hardware Specifications ____

Digital I/O	
I/O Channels	48-ch, 5 V TTL compatible
Input Logic Low	0.8 V max.
Input Logic High	2.4 V min.
Output Source Current	32 mA max.
Output Sink Current	64 mA max.
Programmable Interrupts	4
General	
Bus Type	PCI Express x1
Connectors	Female DB-37 x 1, 50-pin Male box header x 1
Power Consumption	900 mA @ +5 V
Operating Temperature	0 °C ~ +60 °C
Storage Temperature	-20 °C ~ +70 °C
Humidity	5 ~ 85% RH, non-condensing

Ordering Information _

PEX-D48 CR	PCI Express, 48-ch TTL DIO board (RoHS)

Terminal No Pin Pin Assign Assign ment ment N.C 01 • 20 +5V N.C. 02 21 GND PB_7 03 22 PC 7 PB_6 04 23 PC 6 PB 5 05 24 PC 5 PB_4 06 25 PC 4 PB_3 07 26 PC 3 08 PB 2 27 PC_2 PB 1 09 28 PC_1

29 PC 0

30 PA_7

31 PA_6

32 PA 5

34 PA_3

35 PA_2

36 PA_1

37 PA_0

33 PA 4

Pin Assign- ment	Te	erminal I	Pin Assign- ment						
 PC_7	01	00	02	GND					
 PC_6	03	00	04	GND					
PC_5	05	00	06	GND					
PC_4	07	00	08	GND					
PC_3	09	00	10	GND					
PC_2	11	00	12	GND					
PC_1	13	00	14	GND					
PC_0	15	00	16	GND					
PB_7	17	17 0 0	18	GND					
PB_6	19	0 0 20		GND					
PB_5	21	00	22	GND					
PB_4	23	40 0	24	GND					
PB_3	25	0 0	26	GND					
PB_2	27	0 04	28	GND					
PB_1	29	00	30	GND					
PB_0	31	00	32	GND					
PA_7	33	00	34	GND					
PA_6	35	00	36	GND					
PA_5	37	00	38	GND					
PA_4	39	00	40	GND					
PA_3	41	00	42	GND					
PA_2	43	00	44	GND					
PA_1	45	00	46	GND					
PA_0	47	00	48	GND					
+5V	49	00	50	GND					
CN2									

PCI-D64HU

Universal PCI, 40 MB/s High-Speed 32-ch D/I and 32-ch D/O Board

Features **>>>**

- Universal PCI (3.3 V/5 V) interface
- 32-ch 5 V TTL digital output
- Data transfer rate up to 40 MB/s for each DMA channel
- Onboard 1 k/2 k DWORD FIFO for DI/DO respectively
- DO FIFO supports ring buffer mode
- No bus loading in repetitive pattern generation application

- 32-ch 5 V TTL digital input
- 2-ch bus mastering scatter/gather DMA
- Data transfer modes:
 - Direct program control, Internal timer pacer
- External clock (D/I only), Handshaking

Introduction

The PCI-D64HU is a high-speed digital I/O card consisting of 32 digital input channels and 32 digital output channels. High-performance designs make this card perfect for high-speed data transfer and pattern generation applications.

The PCI-D64HU performs high-speed data transfer by bus-mastering DMA via 32-bit PCI bus. The maximum data transfer rate can be up to 40 MB per second.

Several digital I/O transfer modes are supported, such as direct programmed I/O control, timer pacer control, external clock mode and handshaking mode. The PCI-D64HU also features programmable digital filter for all input signals including handshaking and trigger signals.

The PCI-D64HU is a reliable and cost-effective connection interface that works on your computer system to control high-speed peripherals.

Software

- Supports 32-bit Windows 2000/XP/2003/Visat/7
- VB/VC/BCB sample programs with source code

Pin Assignments

Hardware Spe	cifications
Digital Input	
Channels	32-ch, 5V/TTL
Input Voltage	Logic 0: 0.8 V max.; Logic 1: 2.0 V min.
Handshaking Signals	I_REQ input , I_ACK output , I_TRG input
Digital Output	
Channels	32-ch, 5V/TTL
Output Voltage	Logic 0: 0.55 V max.; Logic 1: 2.0 V min.
Output Capability	Sink: 64 mA @ 0.55 V; Source: 32 mA @ 2.0 V
Handshaking Signals	O_REQ output, O_ACK input, O_TRG output
Transfer Speed	40 MB/sec for DI and DO simultaneously (max.)
On Board FIFO	
Size	1 k DWORD (32-bit) for DI; 2 k DWORD (32-bit) for DO
General	
Bus Type	Universal PCI, 32-bit, 33 MHz
Connectors	Female DB-37 x 1, 40-pin Box header x 1
Power Consumption	200 mA @ +5 V typical (output no load)
Operating Temperature	0 °C ~ +60 °C
Humidity	5 ~ 85% RH, non-condensing

Pin	Te	rminal N	lo.	Pin		Pin					Pin
Assign-				Assign-		Assign- ment	Te	ermii	nal N	lo.	Assign- ment
ment				ment			_		-	1	
			· · · ·			DI_16	01	0	0	02	DO_16
DI_0	01	••	20	DO_0		DI_17	03	0	0	04	DO_17
DI_1	02	•	21	DO_1		DI_18	05	0	0	06	DO_18
DI_2	03		22	DO_2		DI_19 DI_20	07 09	0	0	08	DO_19 DO_20
DI_3	04		23	DO_3		DI_20	11	0	0	12	DO_20
DI_4	05	•	24	DO_4		DI_21	13	0	õ	14	DO_21
DI_5	06	• •	24	DO_4 DO_5		DI_23	15	l õ	õ	16	DO_23
DI_6	07	• •		-		DI 24	17	40	ō	18	DO_24
DI_7	08	••	26	DO_6		DI_25	19	0	0	20	DO_25
DI_8	09	•	27	DO_7		DI_26	21	Чо	0	22	DO_26
DI_9	10	•	28	DO_8		DI_27	23	0	0	24	DO_27
DI_10	11	. •	29	DO_9		DI_28	25	0	0	26	DO_28
-	12	. •	30	DO_10		DI_29	27	0	0	28	DO_29
DI_11		••	31	DO_11		DI_30	29	0	0	30	DO_30
DI_12	13	•	32	DO_12		DI_31	31	0	0	32	DO_31
DI_13	14	•	33	DO_13		+5V	33	0	0	34	GND
DI_14	15	•	34	DO_14		O_ACK	35	0	0	36 38	O_TRG N.C.
DI_15	16		35	DO 15		N.C.	37	0	0	40	N.C.
+5V	17	•	36	GND		N.C.	37	Ľ	-	40	N.G.
I_ACK	18	• •	37	I_TRG				CC	N2		
I_REQ	19		57	1_1KG							
			·								
		\mathbf{C}									
		U									
		CON1									

	Universal PCI, 40 MB/s High-speed 32-ch DI and 32-
PCI-D64HU CR	ch DO (RoHS). Includes one CA-4037W cable and
	two CA-4002 D-Sub connectors.

PEX-P8R8i/PEX-P16R16i

PCI Express, 8/16-channel Isolated Digital Input, 8/16-channel Relay Output Board

Features **>>>**

- PCI Express x1, Plug & Play
- 8/16-ch Relay output, 8/16-ch isolated digital input
- AC signal input with filter
- 7 ms relay release time

- Supports Card ID (SMD Switch)
- Selectable DC signal input filter
- 2000 Voc photo-isolation protection

Introduction

The PEX-P8R8i/PEX-P16R16i is a PCI Express card with programmable digital I/O interface. It provides 8/16 photocoupler digital inputs with 2000 Voc isolation protection, allows the input signals to be completely floated to prevent the ground loops. It is also equipped with 8/16 relay outputs for controlling ON/OFF of external devices, driving external relays or small power switches, and activating alarms... etc.

The PEX-P8R8i/PEX-P16R16i is designed as easy replacement for the PISO-P16R16U, and users can replace the PISO-P16R16U with the PEX-P8R8i/PEX-P16R16i directly without any software/driver modification.

Software

- DOS Lib and TC/BC/MSC sample program (with source codes)
- DLL and OCX SDK for 32-bit and 64-bit Windows XP/2003/ Vista/2008/7
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes
- Supports LabVIEW and Linux

Hardware Specifications _

Models	PEX-P8R8i	PEX-P16R16i			
Digital Input					
Isolation Voltage	2000 VDC (Photo-couple)				
Channels	8	16			
Input Voltage	Logic 1: AC/DC 5 ~ 24 \	/ (AC 50 ~ 1 kHz)			
input totage	Logic 0: AC/DC 0 ~ 1 V				
Response Speed	Without Filter: 50 kHz (1 With Filter: 0.455 kHz (1				
Delay Output	WILLI FILLEL: 0.455 KHZ (1	урісат)			
Relay Output					
Channels	8	16			
Relay Type	4 SPDT, 4 SPST	8 SPDT, 8 SPST			
Contact Rating (Voltage)	120 Vac/24 Vdc				
Contact Rating (Current)	1 A				
Operate Time	1 ms (typical)				
Release Time	7 ms (typical)				
Life	Mechanical: 5,000,000 c	ips.			
	Electrical: 100,000 ops.				
Insulation Resistance	1000 MΩ				
General					
Bus Type	PCI Express x1				
Card ID	Yes (4-bit)				
Connectors	Female DB-37 x 1	Female DB-37 x 1,			
Connectors		40-pin box header x 1			
Power Consumption	800 mA @ +5 V				
Operating Temperature	0 °C ~ +60 °C				
Humidity	5 ~ 85% RH, non-condensing				

Pin Assign- ment	Те		lo.	Pin Assign- ment
NO_0	01		20	NO_3
COM_0	02	•	21	COM 3
NC_0	03	•	22	NC_3
NO_1	04	•••	23	NO 4
COM_1	05	•	24	COM 4
NC_1	06	•	25	NO 5
NO_2	07	•	26	COM_5
COM_2	08	•	27	NO 6
NC_2	09	•	28	COM 6
NO_7	10	•	29	GND
COM_7	11	•	30	DIB 0
DIA_0	12	•	31	DIB 1
DIA_1	13	•	32	DIB 2
DIA_2	14	•	33	DIB_2 DIB_3
DIA_3	15	•	34	DIB_3
DIA_4	16	•	35	DIB 5
DIA_5	17	•	36	DIB_5
DIA_6	18		37	DIB_0
DIA_7	19	• •	37	010_/
		O		
		CON1		

Pin Assignments _

Pin Assign- ment	Te	ermii	nal N	lo.	Pin Assign- ment
NO_8	01	0	0	02	NO_11
COM_8	03	0	0	04	COM_11
NC_8	05	0	0	06	NC_11
NO_9	07	0	0	08	NO_12
COM_9	09	0	0	10	COM_12
NC_9	11	0	0	12	NO_13
NO_10	13	0	0	14	COM_13
COM_10	15	0	0	16	NO_14
NC_10	17	40	0	18	COM_14
NO_15	19	0	0	20	GND
COM_15	21	40	0	22	DIB_8
DIA_8	23	0	0	24	DIB_9
DIA_9	25		0	26	DIB_10
DIA_10	27	0	0	28	DIB_11
DIA_11	29	0	0	30	DIB_12
DIA_12	31	0	0	32	DIB_13
DIA_13	33	0	0	34	DIB_14
DIA_14	35	0	0	36	DIB_15
DIA_15	37	0	0	38	N/A
N/A	39	0	0	40	N/A
CO	N2 (P	EX-F	916R	16i or	nly)

	PCI Express, 8-ch Isolated Digital Input, 8-ch Relay
PEX-P8R8i CR	Output Board
	Includes one CA-4002 D-Sub connector.
	PCI Express, 16-ch Isolated Digital Input, 16-ch Relay
	Output Board
PEX-P16R16i CR	Includes one CA-4037W cable and two CA-4002 D-Sub
	connectors.

PEX-P8POR8i/PEX-P16POR16i

PCI Express, 8/16-channel Isolated Digital Input, 8/16-channel PhotoMos Relay Output Board

Features **>>>**

PCI Express x1, Plug & Play

- Supports DO status Readback (Register Level)
- Selectable DC signal input filter
- 2000 Voc photo-isolation protection
- LED power indicator
- Low leakage current when PhotoMos relay is off
- High speed DIO operation

Introduction

The PEX-P8POR8i/PEX-P16POR16i is a PCI Express card with programmable digital I/O interface. It provides 8/16 photocouple digital inputs with 2000 Voc isolation protection, allows the input signals to be completely floated to prevent the ground loops. It is also equipped with 8/16 PhotoMos relay outputs for controlling ON/OFF of external devices, driving external relays or small power switches, and activating alarms... etc.

The PEX-P8POR8i/PEX-P16POR16i is designed as easy replacement for the PCI-P8POR8/P16POR16, and users can replace the PCI-P8POR8/P16POR16 with the PEX-P8POR8i/PEX-P16POR16i directly without any software/driver modification.

Hardware Specifications ____

Models	PEX-P8POR8i	PEX-P16POR16i		
Digital Input				
Isolation Voltage	2000 Vpc (Photo-couple)			
Channels	8 16			
Input Voltage	Logic 1: AC/DC 5 ~ 24	/ (AC 50 ~ 1 kHz)		
	Logic 0: AC/DC 0 ~ 1 V			
Response Speed	Without Filter: 50 kHz (
	With Filter: 0.455 kHz (Typical)		
Relay Output				
Channels	8	16		
Relay Type	PhotoMos, Form A			
Contact Rating (Voltage)	300 V (AC peak or DC)			
Contact Rating (Current)	130 mA			
Operate Time	0.7 ms (typical)			
Release Time	0.05 ms (typical)			
On-state Resistance	24 Ω Max.			
Off-state Leakage Current	1 uA Max.			
General				
Bus Type	PCI Express x1			
Card ID	Yes (4-bit)			
Connectors	Female DB-37 x 1 Female DB-37 x 1, 40-pin box header			
Power Consumption	800 mA @ +5 V			
Operating Temperature	0 °C ~ +60 °C			
Humidity	5 ~ 85% RH, non-condensing			

Supports Card ID (SMD Switch)

- 8/16-ch PhotoMos Relay output, 8/16-ch isolated digital input
- AC signal input with filter
- 0.05 ms release time
- Long life and high reliability PhotoMos relay
- No contact bounce, no sparking

Software

- DOS Lib and TC/BC/MSC sample program (with source codes)
- DLL and OCX SDK for 32-bit and 64-bit Windows XP/2003/ Vista/2008/7
- Supports LabVIEW and Linux
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes

Pin Assignments

Pin Assign- ment	Te		lo.	Pin Assign- ment
NO_0	01		20	CM_0
NO_1	02		20	CM 1
NO_2	03		22	CM 2
NO_3	04		23	CM_3
NO_4	05		24	CM 4
NO_5	06	•	24	CM_5
NO_6	07	•	26	CM 6
NO_7	08	•	20	CM_7
N/A	09	•	28	N/A
N/A	10	•	20	N/A / GND
N/A	11	•	30	DIB 0
DIA_0	12	•	31	DIB_0
DIA_1	13	• •	32	DIB_1 DIB_2
DIA_2	14	• •	32	DIB_2 DIB_3
DIA_3	15	• •	33	
DIA_4	16	• •	34	DIB_4
DIA_5	17	• •	35	DIB_5
DIA_6	18	• •		DIB_6
DIA_7	19	••	37	DIB_7
		CON1		

Pin Assign- ment	Te	ermir	nal N	lo.	Pin Assign- ment
NO_8	01	0	0	02	CM_8
NO_9	03	0	0	04	CM_9
NO_10	05	0	0	06	CM_10
NO_11	07	0	0	08	CM_11
NO_12	09	0	0	10	CM_12
NO_13	11	0	0	12	CM_13
NO_14	13	0	0	14	CM_14
NO_15	15	0	0	16	CM_15
N/A	17	40	0	18	N/A
N/A	19	0	0	20	N/A / GND
N/A	21	40	0	22	DIB_8
DIA_8	23	0	0	24	DIB_9
DIA_9	25	0	0	26	DIB_10
DIA_10	27	0	0	28	DIB_11
DIA_11	29	0	0	30	DIB_12
DIA_12	31	0	0	32	DIB_13
DIA_13	33	0	0	34	DIB_14
DIA_14	35	0	0	36	DIB_15
DIA_15	37	0	0	38	N/A
N/A	39	0	0	40	N/A
CON2 (PEX-P16POR16i only)					

	PCI Express, 8-ch Isolated Digital Input, 8-ch
PEX-P8POR8i CR	PhotoMos Relay Output Board
	Includes one CA-4002 D-Sub connector.
	PCI Express, 16-ch Isolated Digital Input, 16-ch
PEX-P16POR16i CR	PhotoMos Relay Output Board
PEX-PIOPORIOI CR	Includes one CA-4037W cable and two CA-4002
	D-Sub connectors.

PCI Express, 14-bit 4-/8-/16-ch Analog Output Board

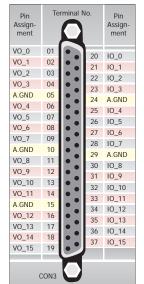
Features **>>>**

- PCI Express x1 interface
- Voltage output: +/- 10 V
- Double-buffered D/A latch
- D/I with pull-high and pull-low jumpers

Introduction

The PEX-DA4/DA8/DA16 series analog output board supports PCI Express interface. It is equipped with 14-bit 4/8/16 analog output channels, and each of the D/A channels features double-buffered latch.

For the PEX-DA series, its voltage output range is from -10 V to +10 V, and the current output range is from 0 to 20 mA. In addition, PEX-DA series also features the following advantages:


Accurate and easy-to-use calibration: ICP DAS provides the software calibration, so that no jumpers and trim-pots are required anymore. The calibration data is saved in EEPROM for long-term use.

Individual channel configuration: Each channel can be individually configured as voltage output or current output.

Card ID: The PEX-DA series adds a Card ID switch for users to recognize the board by the ID via software when using two or more PEX-DA cards in one computer.

The PEX-DA series is designed as easy replacement for the PIO-DA series, and users can replace the PIO-DA series by PEX-DA series directly without any software/driver modification.

Pin Assignments

-	Pin Assign- ment	Te	erminal N	Pin Assign- ment	
	DO 0	01	00	02	DO 1
_	DO 2	03	00	04	DO 3
	DO 4	05	00	06	DO 5
	DO 6	07	၂၀၀	08	DO 7
	DO 8	09	0 0	10	DO 9
	DO 10	11	0 0	12	DO 11
	DO 12	13	0 0	14	DO 13
	DO 14	15	00	16	DO 15
	GND	17	00	18	GND
	+5V	19	00	20	+12V
			CON1		
	Pin Assign- ment	Te	erminal N	lo.	Pin Assign- ment
	Assign-	Te 01		0.	Assign-
	Assign- ment		erminal N		Assign- ment
	Assign- ment DI 0	01	erminal N O O O O O O	02	Assign- ment DI 1
	Assign- ment DI 0 DI 2	01 03	erminal N 0 0 0 0 0 0	02 04	Assign- ment DI 1 DI 3
	Assign- ment DI 0 DI 2 DI 4	01 03 05	erminal N 0 0 0 0 0 0 0 0	02 04 06	Assign- ment DI 1 DI 3 DI 5
	Assign- ment DI 0 DI 2 DI 4 DI 6	01 03 05 07	erminal N 0 0 0 0 0 0 0 0 0 0	02 04 06 08	Assign- ment DI 1 DI 3 DI 5 DI 7
	Assign- ment DI 0 DI 2 DI 4 DI 6 DI 8	01 03 05 07 09	erminal N 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 04 06 08 10	Assign- ment DI 1 DI 3 DI 5 DI 7 DI 9
	Assign- ment DI 0 DI 2 DI 4 DI 6 DI 8 DI 10	01 03 05 07 09 10	erminal N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 04 06 08 10 12	Assign- ment DI 1 DI 3 DI 5 DI 7 DI 7 DI 9 DI 11
	Assign- ment DI 0 DI 2 DI 4 DI 6 DI 8 DI 10 DI 12	01 03 05 07 09 10 12	erminal N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 04 06 08 10 12 14	Assign- ment DI 1 DI 3 DI 5 DI 7 DI 7 DI 9 DI 11 DI 13 DI 15 GND
	Assign- ment DI 0 DI 2 DI 4 DI 6 DI 8 DI 10 DI 10 DI 12 DI 14	01 03 05 07 09 10 12 14	erminal N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 04 06 08 10 12 14 16	Assign- ment DI 1 DI 3 DI 5 DI 7 DI 7 DI 9 DI 11 DI 13 DI 15

CON2

Available soon

- 4-, 8- or 16-ch 14-bit analog output
- Current output: 0 ~ 20 mA (sink)
- 16-ch 5 V TTL D/I, 16-ch 5 V TTL D/O
- Card ID function

Software

- DOS Lib and TC/BC/MSC sample program (with source codes)
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes
- Supports LabVIEW and Linux

Hardware Specifications

Models	PEX-DA4	PEX-DA8	PEX-DA16	
Analog Outputs				
Channels	4	8	16	
Resolution	14-bit			
Accuracy	0.01% of FSR ± 2 LSB @ 25 °C, ± 10 V			
Output Range	+/- 10 V, 0 ~ 20	mA		
Output Driving	+/- 5 mA			
Slew Rate	0.71 V/µs			
Digital Inputs				
Channels	16-ch, 5 V/TTL			
Input Voltage	Logic 0: 0.8 V ma	ax., Logic 1: 2.0 V	min.	
Response Speed	400 kHz (Typical)			
Digital Outputs				
Channels	16-ch, 5 V/TTL			
Output Voltage	Logic 0: 0.4 V ma	ax., Logic 1: 2.4 V	min.	
Output Capability	Sink: 2.4 mA @ 0	0.8 V, Source: 0.8 r	mA @ 2.0 V	
Response Speed	400 kHz (Typical)			
General				
Bus Type	PCI Express x1			
Card ID	Yes (4-bit)			
Connectors	Female DB-37 x 1, 20-pin box header x 2			
Power Consumption	600 mA @ +5 V	800 mA @ +5 V	1400 mA @ +5 V	
Operating Temperature	0 °C ~ +60 °C			
Humidity	5 ~ 85% RH, non-condensing			

PEX-DA4 CR	PCI Express, 4-ch Analog Output board (RoHS)
PLA-DA4 CK	Includes one CA-4002 D-Sub connector
PEX-DA8 CR	PCI Express, 8-ch Analog Output board (RoHS)
PEX-DAO CR	Includes one CA-4002 D-Sub connector
PEX-DA16 CR	PCI Express, 16-ch Analog Output board (RoHS)
PEX-DATO CR	Includes one CA-4002 D-Sub connector

PEX-1002L/PEX-1002H

PCI Express, 32-ch, 12-bit, 110 or 44 kS/s Multifunction Board

Features **>>>**

- PCI Express x1, Plug & Play
- 110 or 44 kS/s A/D sampling rate
- 16-ch 5V TTL D/I
- Supports Card ID (SMD Switch)

Available soon

- Internal pacer trigger
- 16-ch 5V TTL D/O
- D/I with pull-high and pull-low jumpers

12-bit, 32 S.E/16 Diff. analog inputs

Introduction

The PEX-1002L/H is the new generation product that ICP DAS provides to meet RoHS compliance requirement, and is designed as easy replacement for the PCI-1002 series. Users can replace the PCI-1002 series by the PEX-1002L/H directly without any software/driver modification.

The PEX-1002L/H supports PCI Express bus and provides 12-bit 32 single-ended or 16 differential analog inputs, 16 TTL digital input and 16 TTL digital output channels.

The PEX-1002L/H adds a Card ID switch for users to recognize the board by the ID via software when using two or more PEX-1002L/ H cards in one computer. The pull-high/low jumpers allow user to predefine the DI status instead of floating when the DI channels are unconnected or broken.

Software

- DOS Lib and TC/BC/MSC sample program (with source codes)
- DLL and OCX SDK for 32-bit and 64-bit Windows XP/2003/ Vista/2008/7
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes
- Supports LabVIEW and Linux

Hardware Specifications _____

Models	PEX-1002L	PEX-1002H			
Analog Input					
Channels	32 S.E/16 Diff.				
Resolution	12-bit				
Accuracy	0.01% of FSR ± 2 LSB @	© 25 ℃, ± 10 V			
Sampling Rate	110 kS/s	44 kS/s			
Digital Inputs					
Channels	16-ch, 5 V/TTL				
Input Voltage	Logic 0: 0.8 V max., Log	ic 1: 2.0 V min.			
Response Speed	500 kHz (Typical)				
Digital Outputs					
Channels	16-ch, 5 V/TTL				
Output Voltage	Logic 0: 0.4 V max., Log	ic 1: 2.4 V min.			
Output Capability	Sink: 2.4 mA @ 0.8 V, S	ource: 0.8 mA @ 2.0 V			
Response Speed	500 kHz (Typical)				
General					
Bus Type	PCI Express x1				
Card ID	Yes (4-bit)				
Connectors	Female DB-37 x 1, 20-pi	n box header x 2			
Power Consumption	800 mA @ +5 V				
Operating Temperature	0 °C ~ +60 °C				
Humidity	5 ~ 85% RH, non-conde	ensing			

Pin Assignments ____

Pin Assign- ment	Te		lo.	Pin Assign- ment	Pin Assign- ment	Te	ermir	nal N	lo.
ment				ment	DI 0	01	0	0	02
AI_0	01				DI 2	03	0	0	04
AI_1	02	• •	20	AI_16	DI 4	05	0	0	06
AI_2	03		21	AI_17	DI 6	07	Lо	0	08
AI_2	04	•	22	AI_18	DI 8	09	0	0	10
_	04	•	23	AI_19	DI 10 DI 12	11 13	0	0	12
AI_4		. •	24	AI_20	DI 12	15	0	0	14
AI_5	06	••	25	AI_21	GND	17	0	õ	18
AI_6	07	••	26	AI_22	+5V	19	lõ	õ	20
AI_7	08		27	AI_23					
AI_8	09	•	28	AI 24			С	ON2	
AL 9	10								
_	10	•	29	AL 25			_		
AI10	11	•••	29 30	AI_25	Pin	Te	ermir	nal N	lo.
AI_10 AI_11			30	AI_26	Assign-	Te	ermir	nal N	lo.
	11	•••	30 31	AI_26 AI_27	Assign- ment				1
AI_11	11 12	•••••	30 31 32	AI_26 AI_27 AI_28	Assign-	01 03	0	0	02 04
AI_11 AI_12	11 12 13	•••••	30 31 32 33	AI_26 AI_27 AI_28 AI_29	Assign- ment DO 0	01			02
AI_11 AI_12 AI_13 AI_14	11 12 13 14	• • • • • •	30 31 32 33 34	AI_26 AI_27 AI_28 AI_29 AI_30	Assign- ment DO 0 DO 2	01 03	000	0	02 04
AI_11 AI_12 AI_13 AI_14 AI_15	11 12 13 14 15 16		30 31 32 33 34 35	AI_26 AI_27 AI_28 AI_29 AI_30 AI_31	Assign- ment DO 0 DO 2 DO 4	01 03 05	000	0000	02 04 06
AI_11 AI_12 AI_13 AI_14 AI_15 A.GND	11 12 13 14 15 16 17		30 31 32 33 34 35 36	AI_26 AI_27 AI_28 AI_29 AI_30 AI_31 N.C.	Assign- ment DO 0 DO 2 DO 4 DO 6	01 03 05 07	0000	0000	02 04 06 08
AI_11 AI_12 AI_13 AI_14 AI_15 A.GND N.C.	11 12 13 14 15 16 17 18		30 31 32 33 34 35	AI_26 AI_27 AI_28 AI_29 AI_30 AI_31	Assign- ment DO 0 DO 2 DO 4 DO 6 DO 8 DO 10 DO 12	01 03 05 07 09 10 12	000000	000000000000000000000000000000000000000	02 04 06 08 10
AI_11 AI_12 AI_13 AI_14 AI_15 A.GND	11 12 13 14 15 16 17		30 31 32 33 34 35 36	AI_26 AI_27 AI_28 AI_29 AI_30 AI_31 N.C.	Assign- ment DO 0 DO 2 DO 4 DO 6 DO 8 DO 10 DO 12 DO 14	01 03 05 07 09 10 12 14	0000000	000000000000000000000000000000000000000	02 04 06 08 10 12 14 16
AI_11 AI_12 AI_13 AI_14 AI_15 A.GND N.C.	11 12 13 14 15 16 17 18		30 31 32 33 34 35 36	AI_26 AI_27 AI_28 AI_29 AI_30 AI_31 N.C.	Assign- ment DO 0 DO 2 DO 4 DO 6 DO 8 DO 10 DO 12 DO 14 GND	01 03 05 07 09 10 12 14 16	00000000	000000000000000000000000000000000000000	02 04 06 08 10 12 14 16 18
AI_11 AI_12 AI_13 AI_14 AI_15 A.GND N.C.	11 12 13 14 15 16 17 18		30 31 32 33 34 35 36	AI_26 AI_27 AI_28 AI_29 AI_30 AI_31 N.C.	Assign- ment DO 0 DO 2 DO 4 DO 6 DO 8 DO 10 DO 12 DO 14	01 03 05 07 09 10 12 14	0000000	000000000000000000000000000000000000000	02 04 06 08 10 12 14 16

Ordering Information _____

	PCI Express, 32-ch, 12-bit, 110 kS/s. Low Gain Multi-		
PEX-1002L CR	function DAQ Board (Rohs)		
	Includes one CA-4002 D-Sub cable.		
	PCI Express, 32-ch, 12-bit, 44 kS/s. High Gain Multi-		
PEX-1002H CR	function DAQ Board (Rohs)		
	Includes one CA-4002 D-Sub cable.		

Pin Assignment

DI 1

DI 3

DI 5 DI 7

DI 9 DI 11

DI 13 DI 15 GND +12V

Pin Assignment DO 1 DO 3 DO 5 DO 7 DO 9 DO 11 DO 13 DO 15 GND + 12V

PCI-822LU/PCI-826LU

Universal PCI, 250 kS/ s, 32-ch 12-bit or 16-bit A/D, 2-ch 16-bit D/A and 32-ch Programmable DIO Multi-function Board

Features **>>>**

- Universal PCI (3.3 V/5 V) interface
 12-bit 250 kS/s high-speed A/D for PCI
 - n-speed A/D for PCI- 16-bit 250 kS/s
- Programmable low gain: 1, 2, 4, 8
- 32-ch programmable DIO
- Card ID function

822LU

- 32-ch S.E./16-ch Diff. analog input
 16-bit 250 kS/s high-speed A/D for PCI-826LU
- Built-in MagicScan controller
- D/I with pull-high and pull-low jumpers
- 8K-sample hardware FIFO
- Supports software-trigger and pacertrigger
- 2-ch 16-bit analog output
- DO with status read back function

Introduction

The PCI-822LU/826LU is a multi-function card that providing high-speed analog and digital I/O functions. It features a continuous, 250 kS/ s 12-bit or 16-bit resolution A/D converter, 8K-sample hardware FIFO, 2-ch 16-bit D/A converter, and 32-ch programmable digital I/O with DO read back. The PCI-822LU/826LU provides either 32-CH single-ended or 16-CH differential analog inputs which are jumper selectable, and is equipped with a high speed PGA featuring programmable gain (1, 2, 4 or 8).

The PCI-822LU/826LU has a Card ID switch for users to recognize the board by the ID via software when using two or more PCI-822LU/826LU cards in one computer. The pull-high/low jumpers of the card allow user to predefine the DI status instead of floating when the DI channels are unconnected or broken.

The A/D channel scan function of the PCI-822LU/826LU is so amazing, we call it MagicScan. The MagicScan controller takes out most works of getting A/D value such as selecting channel, setting gain, settling time, triggering A_{DC} and getting data. With the built-in MagicScan and interrupt features, it is effectively off-loading your system CPU from the job. Even in channel scan mode, it can have different gain code for each channel, and the sampling rate can still reach 250 kS/s totally. The PCI-822LU/826LU is suitable for high end applications.

Software

- DOS Lib and TC/BC/MSC sample program (with source codes)
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes

Hardware Specifications _

-				
Models	PCI-822LU	PCI-826LU		
Analog Input				
Channels	32 S.E/ 16 Diff.			
Resolution	12-bit	16-bit		
Sampling Rate	250 kS/s. max.			
FIFO Size	8192 samples			
Accuracy	0.1 % of FSR ±1 LSB @	25 °C, ± 10 V		
Analog Output				
Channels	2			
Resolution	16-bit			
Accuracy	± 6 LSB			
Output Driving	± 5 mA			
Output Range	±5 V, ±10 V, 0 \sim 10 V, 0	~ 5 V		
Slew Rate	8.33 V/µs			
Programmable Digita	11/0			
Channels	32			
Compatibility	5 V/TTL			
Output Capability	Sink: 2.4 mA @ 0.8 V; S	ource: 0.8 mA @ 2.0 V		
General				
Bus Type	3.3 V/5 V Universal PCI,	32-bit		
Card ID	Yes (4-bit)			
Connectors	Female DB-37 x 1, 20-pi	n box header x 2		
Power Consumption	800 mA @ +5 V			
Operating Temperature	0 °C ~ +60 °C			
Humidity	5 ~ 85% RH, non-conde	ensing		

Pin Assignments

		_									
Pin Assign- ment	Te	Terminal No.		Pin Assign- ment		Pin Assign- ment			lo.	Pin Assign- ment	
mem				mem		PB 0	01	0	0	02	PB 1
AL 0	01					PB 2	03	0	0	04	PB 3
AL 1	02	•	20	AI_16		PB 4	05	0	0	06	PB 5
AI_2	03	•	21	AI_17		PB 6	07	Lo	0	08	PB 7
AI_2	03		22	AI_18		PB 8	09	0	0	10	PB 9
_			23	AI_19		PB 10	11	0	0	12	PB 11
AI_4	05	••	24	AI_20		PB 12	13 15	0	0	14	PB 13
AI_5	06	•	25	AI_21		PB 14 GND	15	0	0	18	PB 15 GND
AI_6	07		26	AI_22		+5V	19	0	0	20	+12V
AI_7	08		27	AI_23		+37	19			20	+12V
AI_8	09		AI 24		CON1						
AI_9	10	•	29	AI_24							
AI_10	11	• •		-		Pin	Te	ermir	nal N	lo.	Pin
AL 11	12	• •	30	AI_26		Assign- ment					Assign- ment
AI_12	13	• •	31	AI_27			0.4		_		
AI 13	14	•	32	AI_28		PA 0	01	0	0	02	PA 1
AL 14	15	•	33	AI_29		PA 2 PA 4	03	0	0	04	PA 3 PA 5
	16	. •	34	AI_30		PA 4 PA 6	05	0	0	08	PA 5 PA 7
AI_15		•••	35	AI_31		PA 8	09	10	0	10	PA 9
A.GND	17	•	36	Da2 out		PA 10	10	0	õ	12	PA 11
Da1 out	18		37	D.GND		PA 12	12	ľõ	õ	14	PA 13
Ext_Trg	19	$\mathbf{\mathbf{O}}$				PA 14	14	ō	õ	16	PA 15
						GND	16	0	Ō	18	GND
		Ю				+5V	18	0	0	20	+12V
		CON3						С	ON2	1	

Ordering Information _____

PCI-822LU CR	Universal PCI, 250 kS/ s, 32-ch 12-bit Analog Input, 2-ch
	16-bit Analog Output and 32-ch Programmable DIO (RoHS)
	Includes one CA-4002 D-Sub connector
	Universal PCI, 250 kS/ s, 32-ch 16-bit Analog Input, 2-ch
PCI-826LU CR	16-bit Analog Output and 32-ch Programmable DIO (RoHS)
	Includes one CA-4002 D-Sub connector

Professional Provider of High Quality Industrial Computer Products and Data Acquisition Systems Vol. IOC 1.1.00 (2011.July.15) Web: http://www.aqstech.net

VEX-112/VEX-112i/VXC-112AU/ VXC-112iAU

PCI Express/Universal PCI, 2-Port RS-232

Communication Board

Features **>>>**

- VXC versions supports 3.3 V/5 V PCI bus
- Built-in COM-Selector
- 128-byte hardware FIFO for each port
- +/-4 kV ESD protection for i version

VEX versions supports PCI Express bus

- Provides 2 RS-232 ports
- 2500 VDC Isolation for i version
- Short Card Design

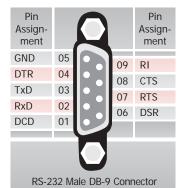
Introduction

The VEX-112/VEX-112i/VXC-112AU/VXC-112iAU communication card provides 2 RS-232 serial ports. Each port supports for speed up to 115200 bps and can work for full-duplex communication. Users may specify a COM port number manually by setting COM-Selector (DIP switch), or let the driver choose an available number automatically. The driver provides a maximum of 128 KB software buffer for each COM port under Windows. It's practical for large file transmission.

In harsh industrial environments, the on board ESD protection component diverts the potentially damaging charge away from sensitive circuit and protects the computer and equipment from being damaged by high potential voltage.

The VEX-112i/VXC-112iAU offers photo isolation to protect your computer and equipment against damages in harsh environment. The built-in photo coupler can help cutting down on ground loops, common mode voltages and block voltage spikes, provide electrical isolation, and offer significant protection from serious over-voltage conditions in one circuit affecting the other.

The serial communication card are designed for use with intelligent devices like bar code reader, serial printers, intelligent sensors, instrumentation equipment, computers and almost any device with an RS-232 port.


Hardware Specifications _____

Models	VEX-112	VEX-112i	VXC-112AU	VXC-112iAU				
Serial Port								
COM1/2	9-Wire RS-232	-Wire RS-232						
UART	16C950 compatible							
Baud Rate	50 ~ 115200 bps							
Data Bit	5, 6, 7, 8							
Stop Bit	1, 1.5, 2							
Parity	None, Even, Odd, M	1ark, Space						
FIFO	Internal 128 bytes							
ESD Protection	-	+/- 4 kV	-	+/- 4 kV				
Isolation	-	2500 VDC	-	2500 VDC				
General								
Bus Type	PCI Express x1 3.3 V/5 V, 33 MHz, 32-bit							
COM-Selector	Yes							
Connectors	Male DB-9 x 2							
Power Consumption	120 mA @ 5 V	440 mA @ 5 V	100 mA @ 5 V	480 mA @ 5 V				
Operating Temperature	0 °C ~ +60 °C	0 °C ~ +60 °C						
Humidity	0 ~ 90% RH, non-c	condensing						

Software

- Driver for 32-bit and 64-bit Windows XP/2003/Vista/7
- Driver for Linux

Pin Assignments

Ordering Information _____

VEX-112 CR	PCI Express Bus, Serial Communication Board with 2 RS-232 ports (RoHS)
VEX-112i CR	PCI Express Bus, Serial Communication Board with 2 Isolated RS-232 ports (RoHS)
VXC-112AU CR	Universal PCI Bus, Serial Communication Board with 2 RS-232 ports (RoHS)
VXC-112iAU CR	Universal PCI Bus, Serial Communication Board with 2 Isolated RS-232 ports (RoHS)

Web: http://www.agstech.net

VEX-142/VEX-142i/VXC-142AU/ VXC-142iAU _____

PCI Express/Universal PCI, 2-Port RS-422/485

Communication Board

Features **>>>**

- VXC versions supports 3.3 V/5 V PCI bus
- Built-in COM-Selector
- 128-byte hardware FIFO for each port +/-4 kV ESD protection for i version

- VEX versions supports PCI Express bus
- Provides 2 RS-422/485 ports
- 2500 Vpc Isolation for i version
- Short Card Design

The VEX-142/VEX-142i/VXC-142AU/VXC-142iAU communication card provides 2 RS-232 serial ports. Each port supports for speed up to 115200 bps and can work for full-duplex communication. Users may specify a COM port number manually by setting COM-Selector (DIP switch), or let the driver choose an available number automatically. The driver provides a maximum of 128 KB software buffer for each COM port under Windows. It's practical for large file transmission.

In harsh industrial environments, the on board ESD protection component diverts the potentially damaging charge away from sensitive circuit and protects the computer and equipment from being damaged by high potential voltage.

The VEX-142i/VXC-142iAU offers photo isolation to protect your computer and equipment against damages in harsh environment. The built-in photo coupler can help cutting down on ground loops, common mode voltages and block voltage spikes, provide electrical isolation, and offer significant protection from serious over-voltage conditions in one circuit affecting the other.

The serial communication card are designed for use with intelligent devices like bar code reader, serial printers, intelligent sensors, instrumentation equipment, computers and almost any device with an RS-422/485 port.

Hardware Specifications _____

Models	VEX-142	VEX-142i	VXC-142AU	VXC-142iAU				
	VEA-142	VEA-1421	VAC-142A0	VAC-1421AU				
Serial Port								
COM1/2	Selectable 8-Wire R	electable 8-Wire RS-422 or 2-Wire RS-485						
UART	16C950 compatible							
Baud Rate	50 ~ 115200 bps							
Data Bit	5, 6, 7, 8							
Stop Bit	1, 1.5, 2							
Parity	None, Even, Odd, N	1ark, Space						
FIFO	Internal 128 bytes							
ESD Protection	-	+/- 4 kV	-	+/- 4 kV				
Isolation	-	2500 V _{DC}	-	2500 V _{DC}				
General								
Bus Type	PCI Express x1		3.3 V/5 V, 33 MHz	, 32-bit				
COM-Selector	Yes							
Connectors	Male DB-9 x 2							
Power Consumption	120 mA @ 5 V	440 mA @ 5 V	100 mA @ 5 V	480 mA @ 5 V				
Operating Temperature	0 °C ~ +60 °C	0 °C ~ +60 °C						
Humidity	0 ~ 90% RH, non-o	condensing						

Software

- Driver for 32-bit and 64-bit Windows XP/2003/Vista/7
- Driver for Linux

Pin Assignments

Ordering Information _____

VEX-142 CR	PCI Express Bus, Serial Communication Board with 2 RS-422/485 ports (RoHS)
VEX-142i CR	PCI Express Bus, Serial Communication Board with 2 Isolated RS-422/485 ports (RoHS)
VXC-142AU CR	Universal PCI Bus, Serial Communication Board with 2 RS-422/485 ports (RoHS)
VXC-142iAU CR	Universal PCI Bus, Serial Communication Board with 2 Isolated RS-422/485 ports (RoHS)

VEX-142/VEX-142i/VXC-142AU/VXC-142iAU

VEX-114/VEX-114i/VXC-114U/ VXC-114iAU

PCI Express/Universal PCI, 4-Port RS-232

Communication Board

Features **>>>**

VXC versions supports 3.3 V/5 V PCI bus

- Built-in COM-Selector
- 128-byte Hardware FIFO for Each Port
- 2500 VDC Isolation for VEX-114i/VXC-114iAU

- VEX versions supports PCI Express bus
- Provides 4 RS-232 ports
- +/-4 kV ESD Protection for VEX-114i/VXC-114iAU
- Short Card Design

Introduction _

The VEX-114/VEX-114i/VXC-114iAU communication card provides 4 RS-232 serial ports. Each port supports for speed up to 115200 bps and can work for full-duplex communication.

Users may specify a COM port number manually by setting COM-Selector (DIP switch), or let the driver choose an available number automatically. The driver provides a maximum of 128 KB software buffer for each COM port under Windows. It's practical for large file transmission.

In harsh industrial environments, the on board ESD protection component diverts the potentially damaging charge away from sensitive circuit and protects the computer and equipment from being damaged by high potential voltage.

The VEX-114i/VXC-114iAU offers photo isolation to protect your computer and equipment against damages in harsh environment. The built-in photo coupler can help cutting down on ground loops, common mode voltages and block voltage spikes, provide electrical isolation, and offer significant protection from serious over-voltage conditions in one circuit affecting the other.

The serial communication card are designed for use with intelligent devices like bar code reader, serial printers, intelligent sensors, instrumentation equipment, computers and almost any device with an RS-232 port.

Software

Drivers for 32-bit Windows 2000 XP/2003/Vista/7

• Drivers for 64-bit Windows XP/2003/Vista/7

Hardware Specifications _____

Models	VEX-114	VEX-114i	VXC-114U	VXC-114iAU				
Serial Port	Serial Port							
COM1 ~ 4	9-Wire RS-232	-Wire RS-232						
UART	16C950 compatib	le						
Baud Rate	50 ~ 115200 bps							
Data Bit	5, 6, 7, 8							
Stop Bit	1, 1.5, 2							
Parity	None, Even, Odd,	Mark, Space						
FIFO	Internal 128 byte	5						
ESD Protection	-	+/- 4 kV	-	+/- 4 kV				
Isolation	-	2500 VDC	-	2500 VDC				
General								
Bus	PCI Express x1		3.3 V/5 V, 33 MH	z, 32-bit				
COM-Selector	Yes (8-bit DIP switch)							
Connector	Female DB-37 x 1							
Power Consumption	120 mA @ 5 V	880 mA @ 5 V	120 mA @ 5 V	880 mA @ 5 V				
Operating Temperature	0 °C ~ +60 °C							
Humidity	0 ~ 90% RH, non	-condensing						

Ordering Information ______

VEX-114 CR	PCI Express, 4-Port RS-232 Communication Board (RoHS)
VEX-114i CR	PCI Express, 4-Port Isolated RS-232 Communication Board (RoHS)
VXC-114U CR	Universal PCI, 4-Port RS-232 Communication Board (RoHS)
VXC-114iAU CR	Universal PCI, 4-Port Isolated RS-232 Communication Board (RoHS)

Pin Assignments _____

Pin Assignment	ie			Pin Assignment
N.C.	01		20	RI3
DCD3	02		21	DTR3
GND	03		22	DSR3
CTS3	04		23	RTS3
RxD3	05		24	TxD3
RI4	06		25	DCD4
DTR4	07		26	GND
DSR4	08		27	CTS4
RTS4	09		28	RxD4
TxD4	10		29	RI2
DCD2	11		30	DTR2
GND	12		31	DSR2
CTS2	13		32	RTS2
RxD2	14		33	TxD2
RI1	15		34	DCD1
DTR1	16		35	GND
DSR1	17		36	CTS1
RTS1	18		37	RxD1
TxD1	19	67		

Accessories

CA-9-3705	DB-37 Male (D-sub) to 4-Port DB-9 Male (D-sub) cable. 0.3 M (90°)
CA-9-3715D	DB-37 Male (D-sub) to 4-Port DB-9 Male (D-sub) cable. 1.5 M (180°)

VEX-144/VEX-144i/VXC-144U/ VXC-144iU

PCI Express/Universal PCI, 4-Port RS-422/485

Communication Board

Features **>>>**

VXC versions supports 3.3 V/5 V PCI bus

- Built-in COM-Selector
- 128-byte Hardware FIFO for Each Port
- 2500 VDC Isolation for VEX-144i/VXC-144iU

- VEX versions supports PCI Express bus
- Provides 4 RS-422/485 ports
- +/-4 kV ESD Protection for VEX-144i/VXC-144iU
- Short Card Design

Introduction

The VEX-144/VEX-144i/VXC-144U/VXC-144iU communication card provides 4 RS-422/485 serial ports. Each port supports for speed up to 115200 bps and can work for full-duplex communication.

Users may specify a COM port number manually by setting COM-Selector (DIP switch), or let the driver choose an available number automatically. The driver provides a maximum of 128 KB software buffer for each COM port under Windows. It's practical for large fi le transmission.

In harsh industrial environments, the on board ESD protection component diverts the potentially damaging charge away from sensitive circuit and protects the computer and equipment from being damaged by high potential voltage.

The VEX-144i/VXC-144iU offers photo isolation to protect your computer and equipment against damages in harsh environment. The builtin photo coupler can help cutting down on ground loops, common mode voltages and block voltage spikes, provide electrical isolation, and offer signifi cant protection from serious over-voltage conditions in one circuit affecting the other.

The serial communication card are designed for use with intelligent devices like bar code reader, serial printers, intelligent sensors, instrumentation equipment, computers and almost any device with an RS-422/485 port.

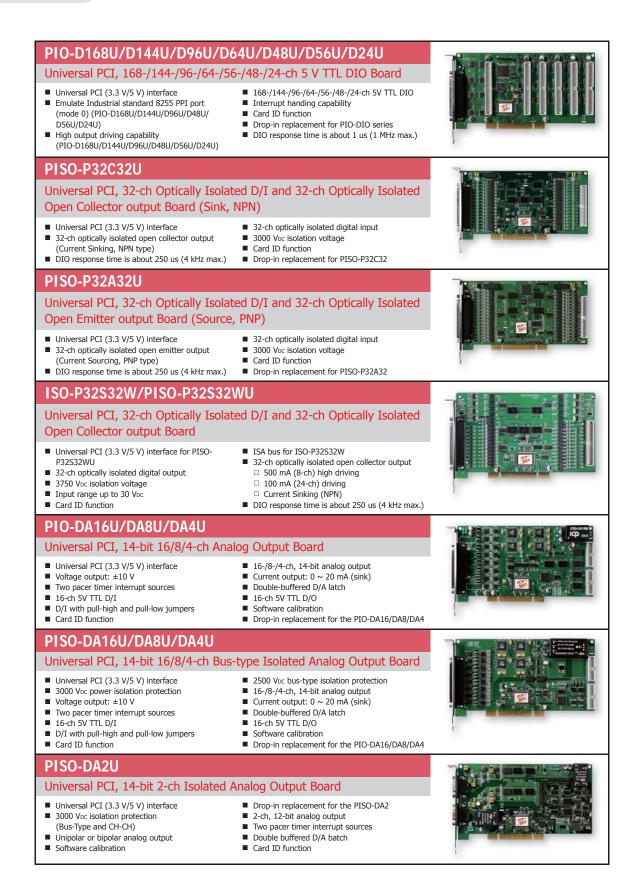
Software

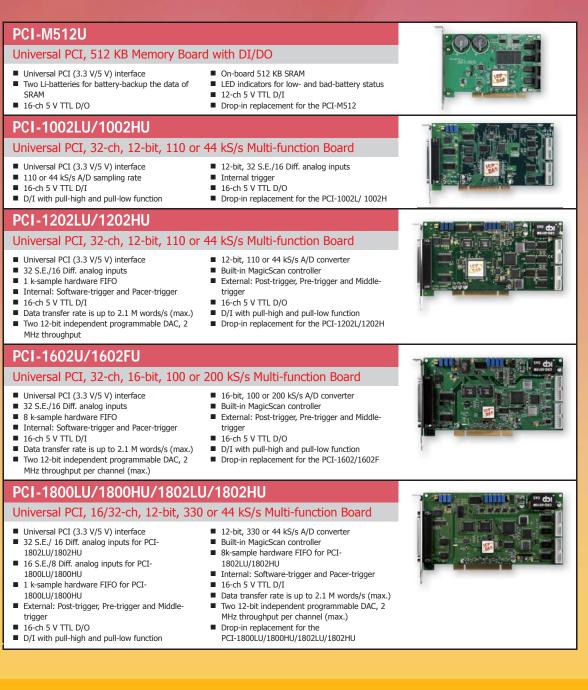
- Drivers for 32-bit Windows 2000 XP/2003/Vista/7
- Drivers for 64-bit Windows XP/2003/Vista/7

Hardware Specifications _____

Models	VEX-144	VEX-144i	VXC-144U	VXC-144iU	
Serial Port					
COM1 ~ 4	Selectable 8-Wire RS-422 or 2-Wire RS-485				
UART	16C950 compatible				
Baud Rate	50 ~ 115200 bps				
Data Bit	5, 6, 7, 8				
Stop Bit	1, 1.5, 2				
Parity	None, Even, Odd, Mark, Space				
FIFO	Internal 128 bytes				
ESD Protection	-	+/- 4 kV	-	+/- 4 kV	
Isolation	-	2500 VDC	-	2500 VDC	
General					
Bus	PCI Express x1 3.3 V/5 V, 33 MHz, 32-bit				
COM-Selector	Yes (8-bit DIP switch)				
Connector	Female DB-37 x 1				
Power Consumption	120 mA @ 5 V	880 mA @ 5 V	120 mA @ 5 V	880 mA @ 5 V	
Operating Temperature	0 °C ~ +60 °C				
Humidity	0 ~ 90% RH, non-condensing				

Ordering Information ______


VEX-144 CR	PCI Express, 4-Port RS-422/485 Communication Board (RoHS)
VEX-144i CR	PCI Express, 4-Port Isolated RS-422/485 Communication Board (RoHS)
VXC-144U CR	Universal PCI, 4-Port RS-422/485 Communication Board (RoHS)
VXC-144iU CR	Universal PCI, 4-Port Isolated RS-422/485 Communication Board (RoHS)


Pin Assignments _____

Pin Assignment	Те	rminal f	No.	Pin Assignment
N.C.	01	2	-	
TxD3-(A)/Data3-(A)	02	. •	20	CTS3-(A)
GND/VFE3	03	. •	21	RxD3-(A)
CTS3+(B)	04	. •	22	
TxD3+(B)/Data3+(B)	05	. •	23	
CTS4-(A)	06	. •	24	
RxD4-(A)	07	. •	25	TxD4-(A)/Data4-(A)
RTS4-(A)	07		26	
RTS4+(B)	09	. •	27	CTS4+(B)
RxD4+(B)	10	. •	28	TxD4+(B)/Data+(B)
TxD2-(A)/Data2-(A)	11	. •	29	CTS2-(A)
GND/VFF2	12	. •	30	RxD2-(A)
CTS2+(B)	12	. •	31	RTS2-(A)
,	13	. •	32	RTS2+(B)
TxD2+(B)/Data2+(B)	14	•••	33	RxD2+(B)
CTS1-(A)			34	TxD1-(A)/Data1-(A)
RxD1-(A)	16	••	35	GND/VEE1
RTS1-(A)	17	•	36	CTS1+(B)
RTS1+(B)	18	•	37	TxD1+(B)/Data1+(B)
RxD1+(B)	19	$\mathbf{\overline{\mathbf{v}}}$		

Accessories

CA-9-3705	DB-37 Male (D-sub) to 4-Port DB-9 Male (D-sub) cable. 0.3 M (90°)
CA-9-3715D	DB-37 Male (D-sub) to 4-Port DB-9 Male (D-sub) cable. 1.5 M (180°)

AGS-TECH Inc Phone: +1-505-550-6501 and +1-505-565-5102 Fax: +1-505-814-5778 Email: sales@agstech.net Web: http://www.agstech.net

